The RpoS-mediated general stress response in Escherichia coli.

نویسندگان

  • Aurelia Battesti
  • Nadim Majdalani
  • Susan Gottesman
چکیده

Under conditions of nutrient deprivation or stress, or as cells enter stationary phase, Escherichia coli and related bacteria increase the accumulation of RpoS, a specialized sigma factor. RpoS-dependent gene expression leads to general stress resistance of cells. During rapid growth, RpoS translation is inhibited and any RpoS protein that is synthesized is rapidly degraded. The complex transition from exponential growth to stationary phase has been partially dissected by analyzing the induction of RpoS after specific stress treatments. Different stress conditions lead to induction of specific sRNAs that stimulate RpoS translation or to induction of small-protein antiadaptors that stabilize the protein. Recent progress has led to a better, but still far from complete, understanding of how stresses lead to RpoS induction and what RpoS-dependent genes help the cell deal with the stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses.

The general stress resistance of Escherichia coli is controlled by the RpoS sigma factor (phi(S)), but mutations in rpoS are surprisingly common in natural and laboratory populations. Evidence for the selective advantage of losing rpoS was obtained from experiments with nutrient-limited bacteria at different growth rates. Wild-type bacteria were rapidly displaced by rpoS mutants in both glucose...

متن کامل

The General Stress Response Is Conserved in Long-Term Soil-Persistent Strains of Escherichia coli.

UNLABELLED Although Escherichia coli is generally considered to be predominantly a commensal of the gastrointestinal tract, a number of recent studies suggest that it is also capable of long-term survival and growth in environments outside the host. As the extraintestinal physical and chemical conditions are often different from those within the host, it is possible that distinct genetic adapta...

متن کامل

RpoS Contributes to Phagocyte Oxidase-Mediated Stress Resistance during Urinary Tract Infection by Escherichia coli CFT073

UNLABELLED Uropathogenic Escherichia coli (UPEC) is the most common causative agent of community-acquired urinary tract infection (UTI). In order to cause UTI, UPEC must endure stresses ranging from nutrient limitation to host immune components. RpoS (σ(S)), the general stress response sigma factor, directs gene expression under a variety of inhibitory conditions. Our study of rpoS in UPEC stra...

متن کامل

General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli.

Microbial cells under growth-limiting stress can generate mutations by mechanisms distinct from those in rapidly growing cells. These mechanisms might be specific stress responses that increase mutation rates, potentially altering rates of evolution, or might reflect non-stress-specific processes in rare growing cells. In an Escherichia coli model system, both frameshift reversion mutations and...

متن کامل

Role of RpoS in the virulence of Citrobacter rodentium.

Citrobacter rodentium is a mouse enteropathogen that is closely related to Escherichia coli and causes severe colonic hyperplasia and bloody diarrhea. C. rodentium infection requires expression of genes of the locus of enterocyte effacement (LEE) pathogenicity island, which simulates infection by enteropathogenic E. coli and enterohemorrhagic E. coli in the human intestine, providing an effecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of microbiology

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2011